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Communications to the Editor

Synthesis of {)-Calicheamicinone by Two Related Scheme %
Methods
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We report the synthesis oft)-calicheamicinone 1), the 02 (98%) NO; (999 NO,
aglycon (in racemic form) of the antitumor agéoalicheamicin -— -
y1'. Ester exchandgeof 3-keto este2* with CICH,CH,OH [Ti- I 20" YY" | < ""CoMe
0 OH B
) E{ D W
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(OPr4)4, 63%], followed by treatment with ¥COs, gave ketene :\/0
acetal3 (80—87%) (Scheme 1). Deprotonation [(eSi)pNLi 9| : i : i
to theZ-enolaté and trapping with MgSiCl afforded trienet, _ OCoBu (_)COBU ! OCOBu-¢
: : e . 10 R=NO;, 7 95% 12 R=7Z— 97% 14
which underwent DielsAlder cycloaddition with methylE)- 11 R=NH ] 1% 13 R=H -] 95%)
3-nitropropenoate(4 — 5% 56% from3). Reduction of with TR - 1 1%
NaBH; gave a 2:1 mixture of C(5) epimeric alcohols [o_nly the o/—_\o COyallyl 0/_\O COyallyl 0/_\0 COyallyl
major one 6) is shown]. These were separated after silylation NH NH NH
[t-BuMe,SiOTf, 2,6-lutidine, 65% (frond) of 5a-isomer7, and (9% ﬁj’ 6%
33% (fromb) of corresponding F-isomef]. Both isomerswere 5/ 2NE >, 9 707N RO”:

independently converted intb4 by identical routes; only the

procedure for the major isomer is shown, but yields for the 5
Me;Si  OH Me;Si  OCOBu-t

series are also given in the scheme. Reduction (DIBAL-H;
99%) of estel7 generated primary alcoh8| and the carbon 17 15 R= H] 93%
carbon double bond @&was then cleaved (OsNalOy; 99%). 16 R=7Z

The resulting equilibrium mixture of lactol9) afforded (96%)

a single pivaloatel() in the presence afBuCOCI and pyridine.
Next, the nitro group was reduc€dNiCl,, NaBH,, ultrasound,
95%) and protected (allyloxycarbonyl chloride, pyridine; 94%)
(10 — 11 — 12). Desilylation (2 — 13; TBAF; 97%) and
PCC oxidation {3 — 14; 91%) now set the stage for

o_ o §OMe

introduction of the first acetylene unil4 — 15°. This was MesSi O MeySi O MesSi O
91%
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Scheme 2

30 R=R'=H 32 ——1
L3 R=SiEt3,R'=HI

aZ = SiMeBu-t.

where we needed to introduce double bonds at-€¢{y) and
C(2)—C(3) and attach an acetylene unit at C(9).
Compoundl8was desaturated at CHEL(7) [L8— 19; LDA,
PhSeBr; dimethyldioxirane; 85%), deprotected at nitrodeh [
— 20; Pd(PPh)4, dimedon€*? 93%)], desaturated at C2L(3)
(20— 21; t-BuOCl, DBU; 81%), and methoxycarbonylateti (
— 22; triphosgene, pyridine; MeOH; 91%). Next, free radical
bromination at C(9) 22 — 23 NBS, (PhCO)O,, 100 W
tungsten lamp], followed by hydrolysis (B, AgNG;, 23 —
24%3) and esterification (CbN,), gave aldehyde est@b (77%
from 22). This reacted with cerium trimethylsilylacetylide
(1:1.3 MeSiC=CLi, CeCk, THF, —78°C), affording26 (91%).
Finally, desilylation (TBAF) yielded27° (46%). During this
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Me;Si (0}
37
aZ = SiMe;Bu-t; A = CH,0CsH,OMe-p.
hydrolysis (TsOH, HO, 84%) served to disengage the two
remaining protecting groups and so give synthetig-¢ali-
cheamicinone 1).1a.

We have also converted racen@i¢represented in Scheme 3
by the enantiome8a) into ketone33 by procedure$20 of the
type used in the first route. Treatment 88 with cerium
trimethylsilylacetylide (1:1.4 MgSiC=CLi, CeCk; THF, —78
°C; 91%) serves to introduce the acetylesyato the nitrogen

AO

SiMe; Me;Si

step, epimerization occurs at C(9); however, treatment of the (33— 34), and further elaboratif! took the route as far as

easily separatednti-isomet* (42% isolated fron26) with Bu,-
NOAc gives quantitatively a 6:4 mixture in favor 7.
Therefore, by equilibrating thanti-diyne once, it is possible
to convert26 into 27 in 71% vyield.

The acetylenic hydrogens @% were now replaced by iodine
(27 — 28; NIS, AgNGO;; 89%], and the cyclic enediyne was
then generatél (Scheme 228 — 29; 72%) by Pd-mediated
condensation with Z)-1,2-bis(trimethylstannyl)ethete [Pd-
(PPhy)s, 60 °C]. From 29, the last steps were guided by
establishet?17 principles. Reduction with DIBAL (98%),
desilylation (TBAF, 94%), and further reduction (76%) with
NaBH,; gave triol30. Silylation of the primary and secondary
hydroxyls (EtSiOTf, 2,6-lutidine, 95%) and selective hydrolysis
(3:6:1 AcOH, THF, HO; 94%) then afforded allylic alcohol
31, from which point elaboration of the trisulfid1 — 32)
was accomplishéé&!8by successive reaction with diisopropyl
azodicarboxylate, BR, and AcSH (94%) and DIBAL-H and
N-(methyldithio)phthalimide (88% over two steps). Finally, acid
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aldehyde35. This reacts with cerium trimethylsilylacetylide
(1:1.3 MgSIiC=ClLi, CeCk, THF, —78 °C) to give alcohol36
(71%)22 which is easily convertibf@23into lactone37 and then,
by a procedur®-24 similar to that used earlier, int®7.

The only stereogenic center &8 and 34 that is preserved
after elaboration toX)-calicheamicinone is C(5). Therefore,
in a synthesis of material with the natural stereochemistry (as
actually depicted in diagrart), intermediates corresponding
to 5 with (2S) absolute configuration would have to be processed
as in Scheme 1, while the reactions of Scheme 3 would be used
for the (R)-isomer.
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(19) OH — OCOBut; CH=CH, — CHO — CH,OH — CH,OCH,-
OCeH4OMe-p; NO, — NH2, — NHCOuallyl; CHOSiMeBu-t — CHOH —
C=0. The C(5) epimer o8a was also converted int83.

(20) See supporting information for details of these efficient procedures.

(21) OH— OSiMeBu-t; CH,OCOBuUt — CH,OH — CHO.

(22) The C(9) epimer (18%) is convertible (PCC; NaBtta. 90%
overall) into an 11.6:1 isomer mixture in favor 86.

(23) OH— OCOCHCI; CH,O0CH,0CsHsOMep — CH,OH — CHO;
OCOCHCI — OH; Collins oxidation of lactols.

(24) Desaturation at C(4)C(7), nitrogen deprotection, desaturation at
C(2)—C(3), nitrogen methoxycarbonylation, acetylene desilylation.




